Course Information

Location and Time: Manchester 244, TuTh 1:30-2:45 (Aug 26 Dec 9)

Instructor

Prof. Samuel (Sam) Cho Office Location: Olin 301B Office Hours: F 11:30a-12:30p or by appointment Email: <u>choss@wfu.edu</u>

Course Overview

Physics of biologically important molecules, especially proteins and nucleic acids. Topics covered include the physical basis of biomolecular structure, the energetics, and statistical mechanics of biomolecular dynamics, and the electrostatics and solvation of biomolecules.

Textbook

Molecular and Cellular Biophysics, Meyer B. Jackson (required)

Grading Scheme

10%	Homework
20%	Quizzes
30%	Midterm
40%	Final Exam

Homework

All assigned homework will be due at the beginning of class on the following class. Working with others is encouraged, but each student must turn in their own individual work. No late work will be accepted.

Academic Misconduct

Any form of academic misconduct, as specified in the Honor Code at Wake Forest University and described in the Student Handbook will be reported to the Judicial Council and the Dean of Colleges for appropriate action.

Topics

Introduction to Biological Macromolecules

Nucleic Acids Structures

Amino Acid & Protein Structures

Intermolecular Forces:

Electrostatics, Lennard-Jones, & Hydrophobic

Calculations of Conformations

Thermodynamics Overview

Molecular Associations

Polymer Solutions

Polymer Conformations and Dynamics

Statistical Mechanics Overview

Chemical Kinetics Overview

Transition State Theory & Kramer's Theory

Kinetic Experiments

Introduction to Molecular Dynamics Simulations

Course Grained Models: HP and Go Models

Protein and RNA Folding Problems (and Solution?)

Protein-Protein Associations

Protein Aggregation

RNA Folding and Protein-RNA Binding Mechanisms

GPU-based MD Simulations